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ABSTRACT 
This paper presents an efficient method to detect human 

pose with monocular color imagery using a parallel architecture 
based on deep neural network. The network presented in this 
approach consists of two sequentially connected stages of 13 
parallel CNN ensembles, where each ensemble is trained to 
detect one specific kind of linkage of the human skeleton 
structure. After detecting all skeleton linkages, a voting score-
based post-processing algorithm assembles the individual 
linkages to form a complete human structure. This algorithm 
exploits human structural heuristics while assembling skeleton 
links and searches only for adjacent link pairs around the 
expected common joint area. The use of structural heuristics in 
the presented approach heavily simplifies the post-processing 
computations. Furthermore, the parallel architecture of the 
presented network enables mutually independent computing 
nodes to be efficiently deployed on parallel computing devices 
such as GPUs for computationally efficient training. The 
proposed network has been trained and tested on the COCO 
2017 person-keypoints dataset and delivers pose estimation 
performance matching state-of-art networks. The parallel 
ensembles architecture improves its adaptability in applications 
aimed at identifying only specific body parts while saving 
computational resources. 

Keywords: Pose Estimation, Convolutional Neural Networks 
(CNN), Linkage-based Approach, Parallel CNN Architecture. 

INTRODUCTION 
As recent progress in computational capabilities enable 

machines to come into the real world from a lab setting, it 
becomes important to understand and study nearby human 
activity to address safety concerns. Human pose estimation is 
already an active research problem for machine perception 

systems in self-driving cars, search and rescue systems, 
automated surveillance and other Human-Robot Interaction 
(HRI) applications [1]. Accurate and efficient human pose 
estimation is critical in achieving high-level tasks such as 
pedestrian avoidance, automated robotic lifting and moving 
victims for search and rescue applications, human behavior 
recognition, etc.  

Based on the application and the availability of sensing 
modality, the input data could be either 2D images [2–6], 3D 
point clouds [7,8], one single frame or a sequence of frames 
(motion-tracking) [9]. In recent decades, researchers have 
focused on model-based algorithms, which deploy finely tuned 
feature extractors such as SIFT [5] and HoG [10] along with 
different human models such as Pictorial Structures [11] and 
Active Shape Models [6]. In more recent years, as artificial 
intelligence has become significantly popular with the HRI 
researchers due to the advancements in computing 
technologies, exploration of neural networks for human pose 
estimation has also picked up the pace. On the same track, 
Toshev and Szegedy [2] utilized sequentially connected 
convolution layers and fully connected layers to build one deep 
neural network for high precision pose estimation. Li et al. 
proposed a pose-joint repressor with body-part detector using a 
single deep neural network [4]. In a slightly different approach, 
Tompson et al. proposed a hybrid architecture using both 
convolutional neural networks and Markov Random Field [3]. 
While other researchers explored human pose estimation in 
still-imagery, the computer vision group from UC Berkeley 
looked into the use of Recurrent-CNNs for both pose 
estimation and gait/action recognition in video input [12,13]. 
Recognition of the pose of a single person [5,6,14–18] in an 
image sets up the foundation for pose estimation of multiple 
persons [9,12,19–22].  

One straightforward approach for multi-person pose-
estimation is to apply a person detector on the input image, and 
then for each person detector proposal, apply a single person *Corresponding author – bentzvi@vt.edu
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pose estimation method. This approach is called a top-down 
method [21,22] and suffers from early commitment, meaning 
that there is no chance to detect a person that is not proposed 
by the person detector, such as Faster RCNN [23]. The 
computational cost of this approach is proportional to the 
number of detector proposals from one image. Another strategy 
for multi-person pose estimation is the bottom-up method [19].  
In these models, the network detects the ‘body parts’ of the 
person visible in the input imagery first and then assembles 
them to multiple individuals according to a given policy. This 
kind of approach solves the early commitment problem but 
suffers from a computational cost problem, since associating 
different parts to individuals is an NP-hard problem [20]. 

One such example of the bottom-up approach builds upon 
a deep convolutional network to detect joints. A higher-level 
spatial model is then used to constrain joint inter-connectivity 
and generate the global pose [3]. Insafutdinov et al. used a 
strong detector to detect person's joints and assemble those 
joints using image-conditioned pairwise terms [19].  

One hybrid approach incorporating both the bottom-up and 
top-down methods has been developed. Sheng et al. proposed a 
method by which one bottom-up detector is used to detect 
joints and one top-down human detector is used to rule out the 
bottom-up false alarms resulting in significantly improved 
tracking accuracy [24].   

Cao et al. proposed the use of a joint heat map with part 
affinity fields to estimate 2D human poses by using multi-stage, 
sequentially connected CNN branches [25]. In their approach, 
each branch was responsible for predicting one specific body 
linkage in terms of joint heat maps and a 2D vector field (Part 
Affinity Fields (PAF)) representing the direction shape of the 
linkage mask. 

This paper builds on the work by Cao et al. [25] and 
presents a deep neural network architecture for multi-person 
pose estimation using parallel CNN ensembles. Similar to 
previous work, the proposed neural network assumes that the 
body skeleton consists of linkages connected to joints. 
However, this paper focuses on exploring the effect of 
parallelization of the CNN nodes on the performance of the 
bottom-up human pose estimation. The network is trained to 
estimate the location and orientation of each link and the 
location of joints. Greedy parsing is then used to assemble the 
linkages to human individuals. The algorithm has been trained 
and tested using the COCO 2017 person keypoint dataset. 

PROPOSED NETWORK ARCHITECTURE 
The proposed system models the human pose using a 13-

link, 14 joint skeleton model as shown in Fig. 1. The method 
presented in this paper consists of two tasks: (1) body part 
detection, and (2) pose regression. The body parts are denoted 
by a set   3

1 2, ,...., w h
n NP P P P    , where 3w h

nP    

and N is a set to 13 representing the number of parts detected 

by the proposed neural network. Each part Pn consists 2D 

vector fields of the link Ln and a confidence map of two 

associated joints Jn , where 2L h w
n

  and J h w
n

 . The 

two associated joints are denoted as high joint Jh
n  and low joint 

J l
n  separately. Jh

n  denotes the joint that is connected with a 

former body part while J l
n denotes the joint that is connected 

with a the later body part; more specifically, 

0Jh h w
n


 , 0Jl h w

n

 . For example, ‘right shoulder - right 

elbow’ body part consists of two associated joints Jn , right 

shoulder joint and right elbow joint and one link Ln that 

connects these two joints. In this body part, right shoulder joint 

is defined as high joint Jh
n while right elbow joint is the low 

joint J l
n .  

In the body part detection task, the proposed neural 
network takes one single 3-channel color image with size 
(h×w×3) as the input and produces the 2D location and 
orientation tensor of the size (h’×w’×39) for each body part of 
persons visible in the input image. The pose regression process 
then assembles the body parts for all individuals in the input 
image using greedy inference.  

Overall Architecture Design:  
As shown in Fig. 2, the proposed neural network 

architecture can be divided into 3 stages: preprocessing stage, 
prediction stage 1, and prediction stage 2. In the preprocessing 

 
Figure 1. Proposed 13-link human skeleton model. 
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Figure 2. Architecture of the 2-stage 13-parallel 
CNN ensemble network. 
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stage, the color input image, I , is fed to a pre-trained VGG19 
network [26] to obtain feature map F. In each predicting stage, 
there exist 13 CNN ensembles to predict the link fields and 
joint confidence maps for each of the 13 skeletal model 
linkages independently. The first predicting stage takes the 
feature map as inputs and produces 2D location and orientation 
tensor, which can be denoted as 1 1 ( ), {1,...,13}n nP F n  . The 

outputs of the first prediction stage merge with the feature 
maps F to generate one single tensor of size h’×w’×167 which 
then serves as the input for the second prediction stage. The 
second prediction stage’s output can be denoted 
as 2 2 1( , ), {1,...,13}n nP P F n  . The independent architecture 

of each branch is aimed at achieving an independent prediction 
behavior for each linkage. The merging of the stage one output 
with the original feature maps to be fed to stage two is aimed at 
providing a reference to stage two for refining the linkage 
predictions of each body part. The outputs of each branch 
present the position and orientation of a body part as a tensor of 
size h’×w’×3, whose last dimension represents the number of 
channels. The first and second channels present the X and Y 
component of the PAF of the link, respectively. The third 
channel is the heat map of the two associated joints.  

Supervision is provided at the end of each stage. To train 
the network to detect all the thirteen body linkages, the loss 
function for each part has been defined by incorporating the 
confidence of the associated joints and the PAF for each 
linkage. In multi-person images, the net loss function of the 
network consists of contribution from individual labelled poses. 
Based on the policy applied by [25], weighted functions are 
used to compute the total loss, f, as follows: 

i i

i

f W f                    (1) 

where iW is the binary mask indicator. It is zero when the 
annotation to the ith person is missing. Therefore, iW helps 
avoid penalizing the neural network when the ground truth is 
missing in the dataset. The total loss function of the ith person, 
if, which includes the loss function of all the body parts is 

          ( )i i i i p i p i p
J L JH JL L

p

f f f f f f                    (2) 

where ifJ and ifL are the loss functions for the joint’s confidence 
map and link PAF, respectively. Due to the different properties 
of the two associated joints, i p

Jf is further divided into i p
JHf  

and i p
JLf   for the high and low joints of the pth body part. The 

loss functions for the joints and the links are presented as 
follows: 

2 2* *
, , , ,2 2

2*

2

,i p p p i p p p
JH H i H i JL L i L i

i p p p
L i i

f J J f J J

f L L

   

 

          (3) 

where, * p
HJ , * p

LJ , and * pL are the loss functions defined for the 

high joints, low joints, and links of the pth body, respectively. 

Body Part Presentation:  

To evaluate the loss function, a three channel-ground truth 
for each body part was generated for each image pixel using 
the annotated 2D keypoints from the COCO dataset. The 
ground truth label is generated for each image pixel wherever 
any body part element is visible. The location and orientation 
of each link is represented using PAF while the joint location is 
expressed using a bipolar Gaussian joint confidence map. The 
high joint has a positive confidence map while the low joint 
uses a negative confidence map to distinguish between each 
other. Let 2 2

, ,,p p
jh i jl i x x  be the ground truth of the high 

joint and the low joint of the pth body part for the ith person. 

The values of , ,,  p p
jh i jl is s for this joint at any pixel location 

2x  are calculated as follows: 

2 2

, ,2 2
, ,2 2

exp , exp
x x x xp p

jh i jl ip p
jh i jl is s

 

           
   
   

       (4) 

where the standard deviation, σ, controls the spread of the 
peaks. The aggregation of the high joint’s and the low joint’s 
ground truth are the maximum absolute values of the 
individuals, with the assumption that no high joint for any 
linkage p coincides with its corresponding lower joint. Figure 3 
shows the bipolar Gaussian joint confidence map for the right 
knee-right ankle linkage.   

To get a strong orientation and position representation of the 
body parts, PAF [25] are used to represent the body part 
linkages. The 2D vector field for the right knee-right ankle 
body linkage is shown in Fig. 3. The PAF ground truth of body 
part p of the individual, i, * p

iL , at any pixel x depends on 

whether or not the pixel is on the part link defined by a region 
along the vector from the high joint to the low joint is defined 

    
Figure 3. Joint confidence and PAF for right knee-
right ankle body linkage 
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with length lp and width σp in pixels. The PAF vector field * p
iL  

is computed as follows: 

,, ,

*
,, , 2

0 ( ) ,  and

0 ( )

0 otherwise

v x xx x
v

v x xx x

pp p
jh i pjl i jh i

p pp p
i jh i pjl i jh i

l

L 

                 


       (5) 

where, v is the unit 2D vector perpendicular to v. If more than 

one person is visible in an image, then the PAF ground truth of 
any body-part p in the image is the average of all the PAFs 
from the visible persons 

* *1p p
i

ip

L L
n

                   (6) 

where np denotes the number of body parts detected in the input 
image.  

System Training:  

The proposed model was implemented using the Keras 
framework [27] with TensorFlow [28] as the backend engine. 
Multiple stochastic gradient descent optimizers are used to 
optimize the neural network with a total; epoch of 43. The 
learning rate for the network training was set to 2×10-4. The 
system training performance is shown in Fig. 4 in the form of 
decay in system loss (as defined by Eq. (2)) with training 
epochs. The model was trained with 52,597 image samples 
from the COCO dataset on an Intel Xeon™ (6-Cores, 1.8 GHz) 
workstation with 32GB RAM and NVIDIA GTX1080 GPU. 
The training process lasted 129 hours and delivered a loss of 
joint confidence map of 37.72 in 43 epochs.  

HUMAN POSE ESTIMATION 
After the confidence map of body parts has been generated 

by the trained network, the human body pose estimation 
process takes charge of associating body parts to their 

respective persons. The pose estimation process takes place in 
two consecutive steps, (1) Body Parts Parsing: assemble part 
link with its associated joints, and (2) Individual Parsing: 
assembling all body parts to individual body skeleton.  

Body Parts Parsing:  

In this process, the association of the high joints, low joints, 
and body part links are determined by computing the integral of 
the PAF between the two joint candidates. A voting mechanism 
has been used to find the best joint-link pairs. For the high joint 

and low joint pair candidate positions, , ,,x xp p
jh m jl n , the 

associated voting score can be calculated as follows: 

  

   

1 , ,
, 0

, ,

, ,1

p p
u jh n jl mp p

m n p pu
jh n jl m

p p
jh n jl m

V L u du

u u u






 



    


x x

x
x x

x x x

             (7) 

where x(u) denotes interpolated position between the high joint 
and low joint. The input to the pth body part parsing is a set of 
the high joints peaks sets p

jhX , low joints peaks sets p
jlX  and 

PAF sets pL , which can be expressed as { , , }p p p
jh jlX X L . The 

output of the body part parsing is a set of high joint and low 
joint pairs,

, ,{( , ) : {1,..., }, {1,..., }}x xp p P P
jh n jl m jh jln N m M  . For 

each part p, a variable 
, {0,1}p

m nC  is used to indicate whether 

the high joint and low joint pairs  , ,,x xp p
jh m jl n

are connected or 

Figure 4. Model training performance 

(A) (B)

(C) (D)

 
Figure 5. Body part parsing: (A) Estimated high 
joint location, (B) Estimated low joint location, (C) 
Both Joints after body part parsing, (D) Skeleton 
output after individual parsing 
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not. The body parsing process aims to maximize the total 
voting score for connecting joint pairs via the following: 

, ,
, ,

,

,

max max

{1,..., }, 1

{1,..., }, 1

p p
m n m n

P p p
C m n m n

C C m n

P p
jl m n

n

P p
jh m n

m

V V C

m M C

n N C

 

  

  





                    (8) 

The equation ensures that no joints are used to construct 
more than one body part.  

Individual Parsing:  

After the body part parsing, the individual parsing 
assembles all the body parts to form individual skeletons by 

assembling rules ,
, {0,1}p q

l hA  . These rules indicate whether 

the low joint of p can be connected to the high joint of q and 
then merged as one joint. Another variable store whether the 

low joints of p, x p
jl  are merged with the high joints of q, xq

jh . A 

voting score ,
,
p q

l hV is then used to determine the possibility of 

the two joints merging into one joint, 

   , ,,
,

, , 2

x x

x x

p p q q
jl l jh hp q

l h p q
jl l jh h

J J
V


 


                       (9) 

Here, the negative sign is assigned to generate positive scores 
due to the negative values of the predicted confidence map of 
the low joints. The score will decrease as the joints grow 
further away. The only exception to this rule applies to the neck 
joints where five different body linkages get connected with 
their high joints, 

   , ,' ,
h,h

, , 2

x x

x x

p p q q
jh h jh hp q

p q
jh h jh h

J J
V





                       (10) 

The multiple-person pose parsing process becomes one 
optimization problem to maximize the total assembling score, 

, ,
, ,

, , , , ' , , ,
, , , , , ,

, ,
, ,

, ,
, ,

max max ( )

1, {1,..., }, 1,

1, {1,..., }, 1

p q p q
l h l h

P Q p q p q p q p q p q p q
C l h l h l h h h h h h h

C C l h

p q P p q
l h jl l h

h

p q Q p q
l h jh l h

l

V V A C V A C

A l M C

A h N C

     

    

    





 (11) 

Here, ,P Q
CV  presents the possibility that joints could be merged 

into one single joint. The connected joint position is then 
refined by weighting the predicted position of the joints from 

the two body parts.  The new connected joint position can be 
refined using the following expression: 

   
   

, , , ,

, ,

, ,

x x x x
x x

x x

p p p q q q
jl l jl l jh h jh hp q

jl l jh h p p q q
jl l jh h

J J

J J

  
 


.          (12) 

 

Once common joints are located, the connected links can be 
identified as 2D human pose skeletons.  

EXPERIMENTS AND RESULTS 

Results on COCO database 

The COCO human keypoint dataset contains 57k images, 
out of which approximately 52k samples were used for the 
training dataset and the remaining 5k samples were used for 
validation. During the training of the neural network, the 
testing that was done on the validation set is performed at the 
end of each epoch. Figure 6 shows some samples from the 
validation set processed on the fully trained network. A good 
match in the predicted and the estimated pose was observed. As 
reported in the training section, a loss of 37.72 was obtained in 
the joint confidence map generation. 

Runtime Analysis 

The runtime of the proposed algorithm comprises of two 
major components: (1) the body parts detection process time, 
which is invariant to the number of persons shown in the 
image, with runtime complexity of O(1); (2) the body parts 

 
Figure 6. Pose Estimation results on COCO 2017 
human keypoint validation dataset 
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assembling process time, whose runtime complexity is O(n2). 
Hence. the runtime increases with number of persons (n) in the 
input image. Compared to the body parts assembling process 
time, the body parts detection process time influences the total 
processing time even more. With a lesser number of sequential 
stages compared to [25], the proposed networks better take 
advantage of parallel computing and estimates the human pose 
in a more efficient way. By using a single GTX1080, the CNN 
takes 103.5 ms , compared to the CNN having taken 99.6 ms in 
[25]. The time of CNN computation decreases to 76.8 ms by 
applying the network on two GTX1080s. The body parsing 
takes 0.61 ms and does not change with the number of GPUs 
deployed. 

CONCLUSION AND FUTURE WORK 
This paper presented one parallel, multi-branch deep 

neural network architecture along with a corresponding post-
processing method for multiple person 2D-pose estimation in 
the monocular image. Each trained branch (CNN ensemble) of 
the proposed neural network was trained to detect one specific 
body part (associated joints and link) for the human skeleton 
model and delivered an overall detection loss of 37.72. The 
highly parallel architecture achieves similar performance 
compared to the previous deep neural network architecture [25] 
but runs faster on a parallel computing devices such as GPU. 
This saves time for post-processing and the ensuing higher 
level tasks. This neural network is also highly adaptable for 
tasks aimed at specific body parts since branches of the last 
stage can be deployed independently. This feature also helps 
save storage and computing resources without sacrificing 
performance. 

The proposed system will be augmented with multispectral 
imagery to enable the detection of human poses in various 
lighting conditions. Efforts are being made to improve the 
network architecture and post-processing algorithms to achieve 
better efficiency and faster runtime for purposes of deployment 
on embedded systems. The proposed system will be deployed 
on an autonomous mobile robotic platform to assist with the 
search and rescue of casualties in disaster management and 
war-like scenarios. 
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